9218 measured reflections 2724 independent reflections

 $R_{\rm int}=0.049$

2209 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(3a*R*,7a*R*)-Bis(4-nitrophenyl) 2-oxoperhydrobenzo[*d*]imidazole-1,3-dicarboxylate

Yun-Hua Xu,^a Maxime Siegler^b and Sihui Long^c*

^aSchool of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China, ^bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA, and ^cDepartment of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506-0082, USA

Correspondence e-mail: slong0@email.uky.edu

Received 14 July 2007; accepted 10 August 2007

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.103; data-to-parameter ratio = 8.9.

The title compound, $C_{21}H_{18}N_4O_9$, is a chiral cyclic urea derivative with an approximate local C_2 axis. The crystal structure is mainly stablized by weak interactions since the molecule does not possess hydrogen-bonding donors. The molecules stack along the *a* axis.

Related literature

For geometry, see: Allen *et al.* (1987). For similar structures, see: Long (2006); Siegler & Long (2006).

Experimental

Crystal data

 $\begin{array}{lll} C_{21}H_{18}N_4O_9 & V = 2065.2 \ (6) \ \text{\AA}^3 \\ M_r = 470.39 & Z = 4 \\ \\ Orthorhombic, \ P2_12_12_1 & Mo \ K\alpha \ radiation \\ a = 6.059 \ (1) \ \text{\AA} & \mu = 0.12 \ \text{mm}^{-1} \\ b = 17.956 \ (3) \ \text{\AA} & T = 90.0 \ (2) \ \text{K} \\ c = 18.982 \ (3) \ \text{\AA} & 0.35 \times 0.20 \times 0.10 \ \text{mm} \end{array}$

Data collection

Nonius KappaCCD diffractometer
Absorption correction: multi-scan
(SCALEPACK; Otwinowski &
Minor, 1997)
T = 0.959 $T = 0.988$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	307 parameters
$wR(F^2) = 0.103$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
2724 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Data collection: *COLLECT* (Nonius, 2002); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 1995); software used to prepare material for publication: *SHELXL97* and local procedures.

SL is grateful to Dr Sean Parkin for providing support and laboratory facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2150).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Long, S. (2006). PhD Thesis, University of Kentucky, USA.

Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1995). XP in SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siegler, M. & Long, S. (2006). Acta Cryst. E62, 05310-05311.

Acta Cryst. (2007). E63, o3835 [doi:10.1107/S1600536807039785]

(3aR,7aR)-Bis(4-nitrophenyl) 2-oxoperhydrobenzo[d]imidazole-1,3-dicarboxylate

Y.-H. Xu, M. Siegler and S. Long

Comment

The title compound, (I), a chiral *C*2 symmetric cyclic urea derivative, was obtained as a by-product during an attempt to synthesize a linker for the preparation of chiral oligoureas (Long, 2006). Here we report the structure of it.

The asymmetric unit of (I) (Fig. 1) contains one molecule and the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The chirality of the C atoms (C1 *R*, C6 *R*) was assigned based on the known chirality of the starting material, with the assumption that no chirality change took place during the reaction. The cyclohexane ring has a chair conformation and the cyclic C1/C6/N2/C7/N1 urea unit has a twisted envolope conformation with no four atoms in the same plane, similar to the structure of (4*R*,5*R*)-4,5-Diphenylimidazolidin-2-one (Siegler and Long, 2006). Since the molecule has no hydrogen bonding donors, the structure is stablized by weak interactions including π stacking. The molecules stack along the *a* axis, and the distance between the face-to-face π stacking aromatic rings is 6.059 Å. In addition, intramolecular O···O interaction exists as indicated by the distances (O3···O1 = 2.615 Å, and O1···O6 = 2.662 Å) (Fig. 2).

Experimental

n-BuLi(8.6 ml, 21.5 mmol) was added dropwise to a round-bottom flask containing *tert*-butyl (1*R*,2*R*)-cyclohexane-1,2diyldicarbamate (3.14 g, 10 mmol) in 20 ml THF cooled with dry ice. After the resulted solution was warmed to ambient temperature, 4-nitrophenyl [1,2-diphenyl-2-(2,2,2-trifluoroacetylamino)ethyl]- carbamate (4.03 g, 20 mmol) in 20 ml THF was added dropwise. The mixture was stirred at room temperature overnight. The solution was washed with 1 N NaOH, water and brine, and then dried with anhydrous Na₂SO₄. After removal of the solvent, the product was recovered as a colorless solid (4.3 g, 91%). Crystals of (I) were obtained by recrystallization from ethyl acetate as colorless blocks.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.95 Å (C_{Ar}H), 0.99 Å (CH₂), and 1.00 Å (CH₁). U_{iso} (H) values were set to $1.2U_{eq}$ for all H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged prior to refinement.

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms). Fig. 2. A packing diagram of (I) along a axis.

(3aR,7aR)-Bis(4-nitrophenyl) 2-oxoperhydrobenzo[d]imidazole-1,3-dicarboxylate

Crystal data

C ₂₁ H ₁₈ N ₄ O ₉	$D_{\rm x} = 1.513 {\rm ~Mg~m}^{-3}$
$M_r = 470.39$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Orthorhombic, $P2_12_12_1$	Cell parameters from 4880 reflections
a = 6.059 (1) Å	$\theta = 1.0-27.5^{\circ}$
b = 17.956 (3) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 18.982 (3) Å	T = 90.0 (2) K
V = 2065.2 (6) Å ³	Block, colourless
Z = 4	$0.35 \times 0.20 \times 0.10 \text{ mm}$
$F_{000} = 976$	

Data collection

Nonius KappaCCD diffractometer	2724 independent reflections
Radiation source: fine-focus sealed tube	2209 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.049$
Detector resolution: 18 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 90.0(2) K	$\theta_{\min} = 1.6^{\circ}$
ω scans at fixed $\chi = 55^{\circ}$	$h = -7 \rightarrow 7$
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)	$k = -23 \rightarrow 23$
$T_{\min} = 0.959, \ T_{\max} = 0.988$	$l = -24 \rightarrow 23$
9218 measured reflections	

Refinement

$1/(-2/(-2)) + (0.0(-7))^2$
Least-squares matrix: full $w = 1/[\sigma (F_o) + (0.06/P)]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.042 \qquad (\Delta/\sigma)_{\text{max}} < 0.001$
$wR(F^2) = 0.103$ $\Delta \rho_{\text{max}} = 0.21 \text{ e} \text{ Å}^{-3}$
$S = 1.04$ $\Delta \rho_{\min} = -0.31 \text{ e} \text{ Å}^{-3}$
2724 reflections Extinction correction: none

307 parameters

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.7327 (4)	0.07569 (12)	0.30668 (13)	0.0216 (5)
H1	0.6373	0.0305	0.3025	0.026*
C2	0.9611 (4)	0.05185 (14)	0.32890 (13)	0.0255 (6)
H2A	0.9565	0.0284	0.3761	0.031*
H2B	1.0611	0.0954	0.3309	0.031*
C3	1.0425 (5)	-0.00426 (14)	0.27372 (13)	0.0300 (6)
НЗА	0.9539	-0.0504	0.2776	0.036*
H3B	1.1980	-0.0172	0.2841	0.036*
C4	1.0270 (5)	0.02536 (14)	0.19768 (13)	0.0292 (6)
H4A	1.1389	0.0649	0.1911	0.035*
H4B	1.0627	-0.0156	0.1647	0.035*
C5	0.7995 (5)	0.05674 (13)	0.17903 (13)	0.0254 (6)
H5A	0.8026	0.0802	0.1318	0.030*
H5B	0.6877	0.0165	0.1788	0.030*
C6	0.7444 (4)	0.11400 (13)	0.23481 (12)	0.0200 (5)
Н6	0.8658	0.1517	0.2362	0.024*
C7	0.4719 (4)	0.17341 (12)	0.30407 (12)	0.0204 (5)
C8	0.4582 (4)	0.19100 (12)	0.17450 (12)	0.0198 (5)
C9	0.1934 (4)	0.27412 (14)	0.12998 (12)	0.0230 (6)
C10	0.3021 (5)	0.33867 (14)	0.10993 (13)	0.0262 (6)
H10	0.4412	0.3513	0.1297	0.031*
C11	0.2022 (5)	0.38445 (13)	0.06004 (13)	0.0260 (6)
H11	0.2729	0.4286	0.0441	0.031*
C12	-0.0020 (5)	0.36406 (13)	0.03427 (12)	0.0225 (6)
C13	-0.1070 (4)	0.29878 (14)	0.05265 (13)	0.0246 (6)
H13	-0.2452	0.2856	0.0326	0.030*
C14	-0.0045 (4)	0.25308 (13)	0.10121 (13)	0.0244 (6)

H14	-0.0709	0.2073	0.1146	0.029*
C15	0.5755 (4)	0.12054 (13)	0.41966 (12)	0.0235 (6)
C16	0.3959 (5)	0.16923 (13)	0.51801 (12)	0.0220 (5)
C17	0.5086 (5)	0.19901 (13)	0.57421 (12)	0.0232 (5)
H17	0.6464	0.2232	0.5677	0.028*
C18	0.4146 (4)	0.19267 (12)	0.64138 (13)	0.0220 (6)
H18	0.4871	0.2124	0.6816	0.026*
C19	0.2146 (4)	0.15713 (13)	0.64735 (12)	0.0205 (5)
C20	0.1017 (4)	0.12713 (12)	0.59117 (13)	0.0220 (5)
H20	-0.0354	0.1024	0.5978	0.026*
C21	0.1940 (5)	0.13401 (13)	0.52468 (13)	0.0239 (6)
H21	0.1199	0.1149	0.4844	0.029*
N1	0.6143 (4)	0.13238 (10)	0.34801 (10)	0.0202 (5)
N2	0.5302 (4)	0.15399 (11)	0.23445 (10)	0.0207 (4)
N3	-0.1138 (4)	0.41454 (12)	-0.01561 (11)	0.0276 (5)
N4	0.1167 (4)	0.14975 (11)	0.71830 (11)	0.0244 (5)
01	0.3305 (3)	0.21570 (10)	0.32218 (9)	0.0259 (4)
O2	0.5490 (3)	0.18582 (9)	0.11838 (8)	0.0239 (4)
O3	0.2732 (3)	0.23065 (9)	0.18638 (9)	0.0262 (4)
O4	-0.0114 (4)	0.46898 (9)	-0.03702 (10)	0.0365 (5)
O5	-0.3052 (4)	0.40039 (11)	-0.03286 (10)	0.0372 (5)
O6	0.4816 (3)	0.18046 (8)	0.44960 (8)	0.0248 (4)
O7	0.6268 (4)	0.06473 (10)	0.44975 (10)	0.0385 (5)
O8	0.2036 (3)	0.18496 (9)	0.76670 (9)	0.0290 (4)
O9	-0.0414 (3)	0.10836 (10)	0.72600 (9)	0.0327 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0264 (13)	0.0189 (11)	0.0196 (12)	0.0002 (10)	0.0028 (11)	0.0005 (10)
C2	0.0247 (13)	0.0286 (12)	0.0232 (13)	0.0028 (12)	0.0020 (12)	0.0036 (11)
C3	0.0289 (14)	0.0309 (13)	0.0302 (14)	0.0079 (13)	0.0015 (13)	0.0012 (12)
C4	0.0328 (15)	0.0281 (12)	0.0267 (14)	0.0069 (12)	0.0098 (13)	-0.0013 (11)
C5	0.0312 (14)	0.0237 (12)	0.0213 (13)	0.0017 (12)	0.0022 (12)	-0.0008 (11)
C6	0.0225 (13)	0.0208 (12)	0.0167 (11)	0.0003 (10)	0.0015 (11)	0.0028 (10)
C7	0.0218 (12)	0.0212 (11)	0.0183 (12)	0.0010 (11)	0.0024 (11)	-0.0004 (10)
C8	0.0220 (12)	0.0202 (11)	0.0173 (12)	-0.0008 (10)	-0.0036 (11)	0.0013 (9)
C9	0.0272 (14)	0.0286 (13)	0.0132 (11)	0.0076 (12)	0.0014 (11)	0.0022 (10)
C10	0.0274 (14)	0.0300 (13)	0.0211 (12)	0.0010 (12)	-0.0020 (12)	-0.0019 (11)
C11	0.0338 (15)	0.0237 (12)	0.0204 (12)	-0.0005 (12)	0.0016 (12)	-0.0032 (11)
C12	0.0315 (15)	0.0227 (11)	0.0132 (11)	0.0066 (12)	0.0018 (11)	0.0006 (9)
C13	0.0225 (13)	0.0324 (13)	0.0189 (12)	0.0001 (11)	-0.0017 (12)	0.0012 (11)
C14	0.0259 (13)	0.0265 (12)	0.0207 (12)	-0.0002 (11)	0.0053 (12)	0.0022 (10)
C15	0.0292 (14)	0.0240 (12)	0.0174 (11)	0.0015 (11)	0.0019 (11)	0.0031 (10)
C16	0.0313 (14)	0.0209 (11)	0.0138 (11)	0.0038 (11)	0.0025 (11)	0.0000 (10)
C17	0.0267 (14)	0.0223 (11)	0.0207 (12)	-0.0006 (11)	0.0015 (11)	0.0012 (10)
C18	0.0281 (14)	0.0221 (12)	0.0158 (11)	-0.0017 (11)	-0.0015 (11)	0.0010 (10)
C19	0.0263 (14)	0.0211 (11)	0.0141 (11)	0.0023 (11)	0.0010 (11)	0.0000 (9)

C20	0.0211 (12)	0.0220 (11)	0.0230 (12)	-0.0008 (11)	-0.0004 (11)	-0.0001 (10)
C21	0.0328 (15)	0.0203 (12)	0.0186 (12)	0.0010 (12)	-0.0050 (12)	-0.0017 (10)
N1	0.0258 (11)	0.0205 (9)	0.0144 (9)	0.0053 (9)	0.0028 (9)	0.0011 (8)
N2	0.0239 (11)	0.0239 (10)	0.0143 (10)	0.0040 (9)	0.0008 (9)	0.0020 (8)
N3	0.0346 (14)	0.0267 (11)	0.0214 (11)	0.0053 (11)	-0.0009 (11)	-0.0009 (9)
N4	0.0297 (12)	0.0228 (10)	0.0206 (11)	0.0008 (10)	0.0022 (10)	0.0004 (9)
01	0.0294 (10)	0.0306 (9)	0.0175 (9)	0.0074 (9)	0.0019 (8)	0.0022 (8)
02	0.0292 (10)	0.0268 (9)	0.0156 (8)	0.0015 (8)	0.0025 (8)	-0.0010(7)
03	0.0251 (9)	0.0360 (9)	0.0174 (8)	0.0087 (8)	0.0012 (8)	0.0082 (8)
O4	0.0520 (14)	0.0241 (9)	0.0333 (11)	-0.0013 (10)	-0.0014 (11)	0.0062 (8)
05	0.0337 (12)	0.0447 (12)	0.0332 (11)	0.0078 (10)	-0.0082 (10)	0.0078 (9)
O6	0.0363 (11)	0.0229 (8)	0.0150 (8)	0.0035 (8)	0.0055 (8)	0.0013 (7)
07	0.0573 (14)	0.0358 (10)	0.0223 (9)	0.0176 (10)	0.0088 (10)	0.0091 (9)
08	0.0342 (10)	0.0347 (10)	0.0180 (9)	-0.0028 (9)	0.0027 (9)	-0.0059 (8)
09	0.0354 (11)	0.0338 (10)	0.0290 (10)	-0.0123 (9)	0.0093 (10)	-0.0017 (8)

Geometric parameters (Å, °)

C1 $C2$	1 509 (4)	G11 G10	
CI = C2	1.505 (1)	C11—C12	1.380 (4)
C1—C6	1.530 (3)	C11—H11	0.9500
C1—H1	1.0000	C12—C13	1.378 (3)
C2—C3	1.535 (3)	C12—N3	1.476 (3)
C2—H2A	0.9900	C13—C14	1.381 (3)
C2—H2B	0.9900	С13—Н13	0.9500
C3—C4	1.541 (3)	C14—H14	0.9500
С3—НЗА	0.9900	C15—O7	1.194 (3)
С3—НЗВ	0.9900	C15—O6	1.343 (3)
C4—C5	1.531 (4)	C15—N1	1.397 (3)
C4—H4A	0.9900	C16—C17	1.375 (4)
C4—H4B	0.9900	C16—C21	1.383 (4)
C5—C6	1.513 (3)	C16—O6	1.413 (3)
C5—H5A	0.9900	C17—C18	1.401 (3)
С5—Н5В	0.9900	С17—Н17	0.9500
C6—N2	1.484 (3)	C18—C19	1.374 (4)
С6—Н6	1.0000	C18—H18	0.9500
C7—O1	1.195 (3)	C19—C20	1.377 (3)
C7—N1	1.408 (3)	C19—N4	1.477 (3)
C7—N2	1.412 (3)	C20—C21	1.386 (3)
C8—O2	1.202 (3)	С20—Н20	0.9500
C8—O3	1.347 (3)	C21—H21	0.9500
C8—N2	1.388 (3)	N3—O4	1.227 (3)
C9—C14	1.371 (4)	N3—O5	1.232 (3)
C9—C10	1.386 (4)	N4—O9	1.222 (3)
С9—ОЗ	1.410 (3)	N4—O8	1.233 (3)
C10—C11	1.393 (4)		
N1—C1—C2	119.6 (2)	C12—C11—C10	118.3 (2)
N1—C1—C6	100.78 (17)	C12—C11—H11	120.9
C2—C1—C6	109.5 (2)	C10-C11-H11	120.9

N1—C1—H1	108.8	C13—C12—C11	123.3 (2)
C2—C1—H1	108.8	C13—C12—N3	118.2 (2)
C6—C1—H1	108.8	C11—C12—N3	118.4 (2)
C1—C2—C3	106.9 (2)	C12—C13—C14	117.8 (2)
C1—C2—H2A	110.3	С12—С13—Н13	121.1
C3—C2—H2A	110.3	C14—C13—H13	121.1
C1—C2—H2B	110.3	C9—C14—C13	119.7 (2)
C3—C2—H2B	110.3	С9—С14—Н14	120.2
H2A—C2—H2B	108.6	C13—C14—H14	120.2
C2—C3—C4	113.1 (2)	O7—C15—O6	125.4 (2)
С2—С3—НЗА	109.0	O7—C15—N1	123.3 (2)
С4—С3—НЗА	108.9	O6—C15—N1	111.2 (2)
С2—С3—Н3В	108.9	C17—C16—C21	123.1 (2)
С4—С3—Н3В	108.9	C17—C16—O6	118.4 (2)
НЗА—СЗ—НЗВ	107.8	C21—C16—O6	118.3 (2)
C5—C4—C3	113.5 (2)	C16—C17—C18	118.2 (2)
C5—C4—H4A	108.9	С16—С17—Н17	120.9
C3—C4—H4A	108.9	C18—C17—H17	120.9
C5—C4—H4B	108.9	C19—C18—C17	118.1 (2)
C3—C4—H4B	108.9	C19—C18—H18	120.9
H4A—C4—H4B	107.7	C17—C18—H18	120.9
C6—C5—C4	106.7 (2)	C18—C19—C20	123.8 (2)
С6—С5—Н5А	110.4	C18—C19—N4	118.1 (2)
C4—C5—H5A	110.4	C20-C19-N4	118.1 (2)
С6—С5—Н5В	110.4	C19—C20—C21	118.0 (2)
С4—С5—Н5В	110.4	C19—C20—H20	121.0
H5A—C5—H5B	108.6	С21—С20—Н20	121.0
N2—C6—C5	121.2 (2)	C16—C21—C20	118.7 (2)
N2	100.43 (19)	C16—C21—H21	120.6
C5—C6—C1	109.19 (18)	C20—C21—H21	120.6
N2—C6—H6	108.4	C15—N1—C7	123.6 (2)
С5—С6—Н6	108.4	C15—N1—C1	119.72 (19)
С1—С6—Н6	108.4	C7—N1—C1	110.17 (19)
O1—C7—N1	127.0 (2)	C8—N2—C7	124.80 (19)
O1—C7—N2	127.3 (2)	C8—N2—C6	120.69 (19)
N1—C7—N2	105.78 (19)	C7—N2—C6	109.51 (19)
O2—C8—O3	124.8 (2)	O4—N3—O5	123.5 (2)
O2—C8—N2	123.1 (2)	O4—N3—C12	118.0 (2)
O3—C8—N2	112.2 (2)	O5—N3—C12	118.4 (2)
C14—C9—C10	122.5 (2)	O9—N4—O8	123.9 (2)
C14—C9—O3	116.7 (2)	O9—N4—C19	118.6 (2)
C10—C9—O3	120.5 (2)	O8—N4—C19	117.5 (2)
C9—C10—C11	118.3 (2)	C8—O3—C9	116.79 (19)
С9—С10—Н10	120.9	C15—O6—C16	115.47 (17)
C11—C10—H10	120.9		
N1—C1—C2—C3	-177.3 (2)	N2-C7-N1-C15	-162.8 (2)
C6—C1—C2—C3	-61.9 (3)	O1—C7—N1—C1	168.4 (2)
C1—C2—C3—C4	53.0 (3)	N2—C7—N1—C1	-11.4 (3)
C2—C3—C4—C5	-51.1 (3)	C2-C1-N1-C15	-57.4 (3)

C3—C4—C5—C6	53.6 (3)	C6—C1—N1—C15	-177.4 (2)
C4—C5—C6—N2	-177.9 (2)	C2—C1—N1—C7	149.8 (2)
C4—C5—C6—C1	-62.1 (3)	C6-C1-N1-C7	29.9 (3)
N1—C1—C6—N2	-34.9 (2)	O2—C8—N2—C7	161.2 (2)
C2-C1-C6-N2	-161.84 (19)	O3—C8—N2—C7	-20.9 (3)
N1-C1-C6-C5	-163.4 (2)	O2—C8—N2—C6	8.9 (3)
C2-C1-C6-C5	69.7 (3)	O3—C8—N2—C6	-173.17 (18)
C14—C9—C10—C11	1.8 (4)	O1—C7—N2—C8	12.1 (4)
O3—C9—C10—C11	-172.1 (2)	N1	-168.1 (2)
C9—C10—C11—C12	1.4 (4)	O1—C7—N2—C6	167.0 (2)
C10-C11-C12-C13	-3.5 (4)	N1—C7—N2—C6	-13.2 (2)
C10-C11-C12-N3	176.6 (2)	C5—C6—N2—C8	-52.9 (3)
C11—C12—C13—C14	2.3 (4)	C1C6N2C8	-173.1 (2)
N3-C12-C13-C14	-177.8 (2)	C5—C6—N2—C7	151.0 (2)
C10-C9-C14-C13	-3.0 (4)	C1—C6—N2—C7	30.8 (2)
O3—C9—C14—C13	171.1 (2)	C13—C12—N3—O4	-173.2 (2)
C12-C13-C14-C9	1.0 (4)	C11—C12—N3—O4	6.7 (3)
C21-C16-C17-C18	0.6 (4)	C13—C12—N3—O5	7.6 (3)
O6—C16—C17—C18	175.2 (2)	C11—C12—N3—O5	-172.5 (2)
C16-C17-C18-C19	-0.1 (3)	C18—C19—N4—O9	-168.4 (2)
C17—C18—C19—C20	0.3 (4)	C20-C19-N4-O9	10.7 (3)
C17—C18—C19—N4	179.4 (2)	C18—C19—N4—O8	10.1 (3)
C18-C19-C20-C21	-0.8 (4)	C20-C19-N4-O8	-170.7 (2)
N4-C19-C20-C21	-179.9 (2)	O2—C8—O3—C9	-5.8 (3)
C17—C16—C21—C20	-1.1 (4)	N2-C8-O3-C9	176.2 (2)
O6—C16—C21—C20	-175.8 (2)	C14—C9—O3—C8	113.1 (2)
C19—C20—C21—C16	1.2 (3)	С10—С9—О3—С8	-72.7 (3)
O7—C15—N1—C7	146.1 (3)	O7—C15—O6—C16	-14.2 (4)
O6—C15—N1—C7	-36.0 (3)	N1-C15-O6-C16	167.9 (2)
O7—C15—N1—C1	-2.8 (4)	C17—C16—O6—C15	106.5 (3)
O6—C15—N1—C1	175.1 (2)	C21—C16—O6—C15	-78.6 (3)
O1—C7—N1—C15	16.9 (4)		

Fig. 3

